Effect of covalent antithrombin-heparin complex on developmental mechanisms in the lung

Author:

Parmar Nagina,Berry Leslie R.,Post Martin,Chan Anthony K. C.

Abstract

We have developed a potent antithrombin (AT)-heparin conjugate (ATH) that is retained in the lung to prevent pulmonary thrombosis associated with respiratory distress in premature newborns. During continuing maturation, pulmonary angiogenesis in premature infants would be a crucial process in lung development. A naturally occurring latent form of antithrombin (L-AT) has antiangiogenic effects on lung vascularization. However, impact of latent ATH (L-ATH) on developing lung vascularization is unknown. Thus, effects of L-AT and L-ATH on fetal murine lung development were compared. Lung buds from embryonic day 11.5 (E11.5) Tie2-LacZ mouse embryos were incubated in DMEM plus FBS supplemented with PBS, AT, L-AT, heparin, ATH, or L-ATH. Vasculature of cultured explants was quantified by X-galactosidase staining. RNA was analyzed with murine gene probes for angiopoietin (Ang)-1, Ang-2, fibroblast growth factor 2 (FGF2), platelet endothelial cell adhesion molecule (PECAM), and vascular endothelial growth factor (VEGF). FGF2-supplemented medium was used to test contribution to effects of L-AT and L-ATH on angiogenesis. Epithelial branching morphogenesis was inhibited by L-AT ( P = 0.003) and heparin ( P < 0.001). L-AT and heparin decreased relative vascular area compared with PBS, ATH, and L-ATH. Expressions of all genes studied were downregulated by L-AT. However, L-AT and L-ATH inhibited branching morphogenesis and vasculature with added FGF2. These findings indicate that covalent linkage of AT to heparin negates disruptive effects of these moieties on lung morphology, vascularization, and growth factor gene expression. ATH may have enhanced safety as an anticoagulant during vascular development.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Reference89 articles.

1. Bronchopulmonary Dysplasia

2. Adamson IY, Bowden DH.Pulmonary reaction to long and short asbestos fibers is independent of fibroblast growth factor production by alveolar macrophages.Am J Pathol137: 523–529, 1990.

3. Adamson IY, Young L, Bowden DH.Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis.Am J Pathol130: 377–383, 1988.

4. The COOH-Terminal Globular Domain of Fibrinogen γ Chain Suppresses Angiogenesis and Tumor Growth

5. Akeson N.Neonatal care for premature infants.Hastings Cent Rep35: 6, 2005.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3