VEGF/Src signaling mediated pleural barrier damage and increased permeability contributes to sub-pleural pulmonary fibrosis

Author:

Lu Yu-Zhi1,Liang Li-Mei2,Cheng Pei-Pei3,Xiong Li2,Wang Meng3,Song Lin-Jie2,Yu Fan4,He Xin-Liang2,Xiong Liang2,Wang Xiao-Rong2,Xin Jian-Bao4,Ye Hong5,Ma Wan-Li2

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

2. Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China

3. Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, China

4. Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

5. School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology

Abstract

The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is sub-pleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the sub-pleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intra-peritoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of IPF patients were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability, increased PMCs permeability aggravated bleomycin-induced sub-pleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced sub-pleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in sub-pleural area in IPF patients. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to sub-pleural pulmonary fibrosis.

Funder

National Natural Science Foundation of China

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3