The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models

Author:

Dickinson Michael G.1,Bartelds Beatrijs1,Borgdorff Marinus A. J.1,Berger Rolf M. F.1

Affiliation:

1. Center for Congenital Heart Diseases, Division of Pediatric Cardiology Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

Pulmonary arterial hypertension (PAH) is a progressive pulmonary vasoproliferative disorder characterized by the development of unique neointimal lesions, including concentric laminar intima fibrosis and plexiform lesions. Although the histomorphology of neointimal lesions is well described, the pathogenesis of PAH and neointimal development is largely unknown. After three decades of PAH pathobiology research the focus has shifted from vasoconstriction towards a mechanism of cancer-like angioproliferation. In this concept the role of disturbed blood flow is seen as an important trigger in the development of vascular remodeling. For instance, in PAH associated with congenital heart disease, increased pulmonary blood flow (i.e., systemic-to-pulmonary shunt) is an essential trigger for the occurrence of neointimal lesions and PAH development. Still, questions remain about the exact role of these blood flow characteristics in disease progression. PAH animal models are important for obtaining insight in new pathobiological processes and therapeutical targets. However, as for any preclinical model the pathophysiological mechanism and clinical course has to be comparable to the human disease that it mimics. This means that animal models mimicking human PAH ideally are characterized by: a hit recognized in human disease (e.g., altered pulmonary blood flow), specific vascular remodeling resembling human neointimal lesions, and disease progression that leads to right ventriclular dysfunction and death. A review that underlines the current knowledge of PAH due to disturbed flow is still lacking. In this review we will summarize the current knowledge obtained from PAH animal models associated with disturbed pulmonary blood flow and address questions for future treatment strategies for PAH.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3