Affiliation:
1. Department of Environmental Health, University of Cincinnati MedicalCenter, Ohio 45267-0056.
Abstract
Airway inflammation is often associated with the infiltration of activated neutrophils and subsequent protease release. Although aiding in the digestion and phagocytosis of foreign proteins and microorganisms, neutrophil proteases can indiscriminately damage healthy lung tissue. In the conducting airway, proteases, particularly neutrophil elastase, are counter-balanced by several antiproteases, including secretory leukocyte protease inhibitor (SLPI). SLPI can be produced locally by a number of cells including the airway epithelial cell. To examine the effects of neutrophil granule components on SLPI transcript levels, airway epithelial cells were treated (up to 96 h) with elastase, other proteases, or enzymes isolated from human sputum. We found that neutrophil elastase increased SLPI transcript levels in primary and transformed human airway epithelial cells in a time- and dose-dependent manner. Other neutrophil products, such as cathepsin G, myeloperoxidase, and lysozyme, had little or no effect on SLPI transcript levels. However, two nonneutrophil proteases, trypsin and pancreatic elastase, also increased SLPI transcript levels at higher doses than that required of neutrophil elastase. Two inflammatory cytokines, tumor necrosis factor-alpha and interleukin-8, produced little or no effect on SLPI transcript levels. This study demonstrates one way in which SLPI is regulated, via a protease that it inhibits, neutrophil elastase.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献