Affiliation:
1. Departments of Medicine and Physiology, University of North Carolinaat Chapel Hill 27599.
Abstract
Guanosine 5'-cyclic monophosphate (cGMP) is an important modulator of fluid balance in many epithelia. We examined its metabolism in primary cultures of human airway epithelia. Sodium nitroprusside increased cGMP levels 30-fold, suggesting that the respiratory epithelium expresses a soluble guanylate cyclase; however, endogenous nitric oxide production was not detected. cGMP levels could also be increased by C-type natriuretic peptide (CNP), but not by atrial natriuretic peptide, brain natriuretic peptide, or Escherichia coli heat-stable enterotoxin, indicating expression of a CNP-specific membrane-bound guanylate cyclase. The one-half effective concentration for CNP was 40 nM and the maximal velocity was 56.7 pmol cGMP.mg protein-1.h-1. After CNP stimulation, approximately 60% of the total synthesized cGMP was preferentially exported from the polarized epithelial cells across the basolateral membrane by a probenecid-sensitive process. Isoproterenol-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) export revealed a similar export pattern and probenecid sensitivity, although a lower efficiency of export (27% of total cAMP was exported). Consistent with previous reports, export of neither cyclic nucleotide was saturable at the concentrations tested. We conclude that the respiratory epithelium expresses a soluble guanylate cyclase, a CNP-specific receptor, and a novel vectorial cyclic nucleotide export mechanism.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献