Maturational changes induced by 1 alpha,25-dihydroxyvitamin D3 in type II cells from fetal rat lung explants

Author:

Marin L.1,Dufour M. E.1,Nguyen T. M.1,Tordet C.1,Garabedian M.1

Affiliation:

1. Centre National de la Recherche Scientifique UPR 3101–67, Ivry sur Seine, Paris, France.

Abstract

Specific binding sites for 1 alpha,25 dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] localized to type II pneumocytes have been evidenced in fetal rat lung at the end of gestation, suggesting a role for vitamin D3 in the control of lung maturation. In this study, we describe the morphological changes that occur in lung explants from 18-day-old rat fetuses grown for 1 and 2 days in control conditions and in the presence of 1 alpha,25(OH)2D3 (10(-9) M) or dexamethasone (10(-7) M). Point counting and planimetric measurements on light and electron micrographs show that 1 alpha,25-(OH)2D3 1) dramatically decreases the mean glycogen content of type II cell profiles between days 1 and 2 of the culture, suggesting an acceleration of the glycogenolytic processes normally occurring at that stage and 2) does not change the intracellular osmiophilic lamellar body (OLB) content of cell profiles, but increases the amount of intraluminal surfactant by 126% when expressed as surfactant clusters surface area/section surface area and by 129% when expressed on a per cell basis, suggesting a stimulation of surfactant synthesis and secretion. By contrast, dexamethasone increases the mean intracellular OLB content of type II cell profiles by 306% and decreases the relative surface area of secreted material by 53 and 73%. In conclusion, 1 alpha,25(OH)2D3 accelerates the physiological maturation of fetal rat type II pneumocytes and could represent a key factor for the onset of normal lung function at birth.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3