Affiliation:
1. Department of Physiology, Monash University, Clayton, Victoria, Australia.
Abstract
Our aim was to determine the effect of short-term (7 days) alterations in fetal lung liquid volume on pulmonary DNA synthesis rates and insulin-like growth factor-II (IGF-II) mRNA levels. Fifteen chronically catheterized fetal sheep were divided into three groups. In one, the trachea was obstructed, in another lung liquid was drained by gravity, and the third group served as controls. After 7 days, [3H]thymidine was injected into each fetus and 8 h later fetal tissues were collected. Fetal lung-to-body weight ratios and total lung DNA contents were greatly increased in fetuses with tracheal obstruction compared with control fetuses, whereas the drainage of lung liquid did not affect these measurements. DNA synthesis rates in pulmonary tissue were significantly reduced from a mean control value of 153.3 +/- 25.1 disintegrations per minute (dpm)/microgram DNA to 57.2 +/- 8.6 dpm/microgram DNA by lung liquid drainage (P < 0.05) and were significantly increased to 236.0 +/- 24.0 dpm/microgram DNA by tracheal obstruction (P < 0.05). Following tracheal obstruction, lung IGF-II mRNA levels were increased to 177.0 +/- 18.2% (P < 0.05) of the mean value for control fetuses, whereas they were reduced to 56.1 +/- 7.1% of control in lung liquid-drained fetuses. We conclude that altering fetal lung expansion has a potent and rapid effect on pulmonary DNA synthesis and that this effect may, in part, be mediated by an alteration in IGF-II gene expression.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献