Formation and stability ofS-nitrosothiols in RAW 264.7 cells

Author:

Zhang Yanhong1,Hogg Neil1

Affiliation:

1. Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Abstract

S-Nitrosothiols have been suggested to be mediators of many nitric oxide-dependent processes, including apoptosis and vascular relaxation. Thiol nitrosation is a poorly understood process in vivo, and the mechanisms by which nitric oxide can be converted into a nitrosating agent have not been established. There is a discrepancy between the suggested biological roles of nitric oxide and its known chemical and physical properties. In this study, we have examined the formation of S-nitrosothiols in lipopolysaccharide-treated RAW 264.7 cells. This treatment generated 17.4 ± 1.0 pmol/mg of protein (means ± SE, n =27) of intracellular S-nitrosothiol that slowly decayed over several hours. S-Nitrosothiol formation depended on the formation of nitric oxide and not on the presence of nitrite. Extracellular thiols were nitrosated by cell-generated nitric oxide. Oxygenated ferrous hemoglobin inhibited the formation of S-nitrosothiol, indicating the nitrosation occurred more slowly than diffusion. We discuss several mechanisms for S-nitrosothiol formation and conclude that the nitrosation propensity of nitric oxide is a freely diffusible element that is not constrained within an individual cell and that both nitric oxide per se and nitric oxide-derived nitrosating agents are able to diffuse across cell membranes. To achieve intracellular localization of the nitrosation reaction, mechanisms must be invoked that do not involve the formation of nitric oxide as an intermediate.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3