Effect of doxycycline on proliferation, MMP production, and adhesion in LAM-related cells

Author:

Chang William Y. C.1,Clements Debbie1,Johnson Simon R.1

Affiliation:

1. Division of Therapeutics and Molecular Medicine and Respiratory Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom

Abstract

Matrix metalloproteinases (MMPs) have been implicated in lung cyst formation in lymphangioleiomyomatosis (LAM). As doxycycline inhibits MMP activity in vivo, some patients take doxycycline, as one report has suggested a possible benefit in LAM. However, there have been no randomized controlled clinical trials of doxycycline for LAM, and any mechanism of action is unclear. Here, we examine previously proposed mechanisms of actions. Cell proliferation and adhesion were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and Cytomatrix cell adhesion kits. Apoptosis was examined by TdT-mediated dUTP nick end labeling (TUNEL) assay. MMP-2 expression was examined by quantitative real-time PCR and zymography in doxycycline-treated ELT3 cells and tumor growth using angiomyolipoma-derived tumor xenografts in nude mice. In ELT3 cells, ≥25 μg/ml doxycycline decreased proliferation, increased apoptosis, and caused a change in cell morphology associated with redistribution of actin stress filaments. Reduction in proliferation was also seen in human angiomyolipoma-derived cells. Cell adhesion to ECM proteins was decreased by doxycycline at 50 μg/ml and prevented detachment of already adherent cells. There was no effect of doxycycline on MMP-2 expression or activity in vitro. In the xenograft model, doxycycline (30 mg·kg−1·day−1) had no effect on tumor growth, final tumor weight, or tumor lysate MMP levels. Doxycycline at doses ≥ 25 μg/ml inhibited cell proliferation and adhesion, possibly by a toxic effect. Doxycycline had no effect on MMP-2 expression or activity or tumor growth in the xenograft model. Any possible in vivo effect is unlikely to be mediated by MMP-2 or reduced cell proliferation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3