Alterations in zinc homeostasis underlie endothelial cell death induced by oxidative stress from acute exposure to hydrogen peroxide

Author:

Wiseman Dean A.,Wells Sandra M.,Hubbard Maryann,Welker Jonathan E.,Black Stephen M.

Abstract

Oxidative stress has been associated with multiple pathologies and disease states, including those involving the cardiovascular system. Previously, we showed that pulmonary artery endothelial cells (PAECs) undergo apoptosis after acute exposure to H2O2. However, the underlying mechanisms regulating this process remain unclear. Because of the prevalence of H2O2in normal physiological processes and apparent loss of regulation in disease states, the purpose of this study was to develop a more complete understanding of H2O2-mediated adverse effects on endothelial cell survival. Acute exposure of PAECs to H2O2caused a dose-dependent increase in cellular release of lactate dehydrogenase and a significant increase in production of superoxide ions, which appear to be generated within the mitochondria, as well as a significant loss of mitochondrial membrane potential and activity. Subsequent to the loss of mitochondrial membrane potential, PAECs exhibited significant caspase activation and apoptotic nuclei. We also observed a significant increase in intracellular free Zn2+after bolus exposure to H2O2. To determine whether this increase in Zn2+was involved in the apoptotic pathway induced by acute H2O2exposure, we developed an adenoviral construct for overexpression of the Zn2+-binding protein metallothionein-1. Our data indicate that chelating Zn2+, either pharmacologically with N,N,N′, N-tetrakis(2-pyridylmethyl)ethylene diamine or by overexpression of the Zn2+-binding protein metallothionein-1, in PAECs conferred significant protection from induction of apoptosis and cell death associated with the effects of acute H2O2exposure. Our results show that the acute toxicity profile of H2O2can be attributed, at least in part, to liberation of Zn2+within PAECs. We speculate that regulation of Zn2+levels may represent a potential therapeutic target for cardiovascular disease associated with acute oxidative stress.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3