Regulation of vascular endothelial barrier function

Author:

Lum H.1,Malik A. B.1

Affiliation:

1. Department of Pharmacology, Rush Medical College/Rush-Presbyterian St.Luke's Medical Center, Chicago, Illinois 60612.

Abstract

The increase in endothelial permeability in response to inflammatory mediators such as alpha-thrombin and histamine is accompanied by cell rounding and interendothelial gap formation, implicating that the predominant transport pathway is a diffusive one [i.e., via cellular junctions (paracellular transport)]. However, the possible contribution by vesicle-mediated transport (i.e., via albumin binding protein gp60) to the overall permeability increase needs investigation. Regulation of paracellular transport in endothelial cells is associated with modulation of actin-based systems which anchor the cell to its neighbor or extracellular matrix, thus maintaining endothelial integrity. At the cell-cell junctions, actin is linked indirectly to the plasma membrane by linking proteins (e.g., vinculin, catenins, alpha-actinin) to cadherins, which function in homophilic intercellular adhesion. Cadherins may also play a role in regulating the formation of tight junctions, which also may be associated with actin. At endothelial focal contacts, the transmembrane receptors (integrins) for matrix proteins are linked to actin via linking proteins (i.e., vinculin, talin, alpha-actinin). In response to inflammatory mediators, second messengers signal two regulatory pathways which modulate the actin-based systems, which may lead to impairment of the endothelial barrier integrity. One pathway is based on protein kinase C (PKC) isozyme-specific phosphorylation of linking proteins at the cell-cell and cell-matrix junctions. The increased phosphorylation is associated with actin reorganization, cell rounding, and increased paracellular transport. The other is the activation of myosin light-chain kinase, (MLCK), which causes an actin-myosin-based contraction that may lead to a centripetal retraction of endothelial cells. Current research is in the identification of protein substrates of PKC isozymes, the specific role of their phosphorylation in barrier function, and determining the precise role of MLCK in modulation of endothelial barrier function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 389 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3