Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-β1 and reactive oxygen species: a requirement for NAD(P)H oxidase

Author:

Mata-Greenwood Eugenia,Grobe Albert,Kumar Sanjiv,Noskina Yelina,Black Stephen M.

Abstract

Our previous studies have indicated that transforming growth factor (TGF)-β1 and VEGF expression are increased in the smooth muscle cell (SMC) layer of the pulmonary vessels of lambs with pulmonary hypertension secondary to increased pulmonary blood flow. Furthermore, we found that TGF-β1 expression increased before VEGF. Because of the increased blood flow in the shunt lambs, the SMC in the pulmonary vessels are exposed to increased levels of the mechanical force, cyclic stretch. Thus, in this study, using primary cultures of pulmonary arterial SMC isolated from pulmonary arteries of 4-wk-old lambs, we investigated the role of cyclic stretch in the apparent coordinated regulation of TGF-β1 and VEGF. Our results demonstrated that cyclic stretch induced a significant increase in VEGF expression both at the mRNA and protein levels ( P < 0.05). The increased VEGF mRNA was preceded by both an increased expression and secretion of TGF-β1 and an increase in reactive oxygen species (ROS) generation. In addition, a neutralizing antibody against TGF-β1 abolished the cyclic stretch-dependent increases in both superoxide generation and VEGF expression. Our data also demonstrated that cyclic stretch activated an NAD(P)H oxidase that was TGF-β1 dependent and that NAD(P)H oxidase inhibitors abolished the cyclic stretch-dependent increase in VEGF expression. Therefore, our results indicate that cyclic stretch upregulates VEGF expression via the TGF-β1-dependent activation of NAD(P)H oxidase and increased generation of ROS.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3