Role of vasodilator-stimulated phosphoprotein in cGMP-mediated protection of human pulmonary artery endothelial barrier function

Author:

Rentsendorj Otgonchimeg,Mirzapoiazova Tamara,Adyshev Djanybek,Servinsky Laura E.,Renné Thomas,Verin Alexander D.,Pearse David B.

Abstract

Increased pulmonary endothelial cGMP was shown to prevent endothelial barrier dysfunction through activation of protein kinase G (PKGI). Vasodilator-stimulated phosphoprotein (VASP) has been hypothesized to mediate PKGIbarrier protection because VASP is a cytoskeletal phosphorylation target of PKGIexpressed in cell-cell junctions. Unphosphorylated VASP was proposed to increase paracellular permeability through actin polymerization and stress fiber bundling, a process inhibited by PKGI-mediated phosphorylation of Ser157and Ser239. To test this hypothesis, we examined the role of VASP in the transient barrier dysfunction caused by H2O2in human pulmonary artery endothelial cell (HPAEC) monolayers studied without and with PKGIexpression introduced by adenoviral infection (Ad.PKG). In the absence of PKGIexpression, H2O2(100–250 μM) caused a transient increased permeability and pSer157-VASP formation that were both attenuated by protein kinase C inhibition. Potentiation of VASP Ser157phosphorylation by either phosphatase 2B inhibition with cyclosporin or protein kinase A activation with forskolin prolonged, rather than inhibited, the increased permeability caused by H2O2. With Ad.PKG infection, inhibition of VASP expression with small interfering RNA exacerbated H2O2-induced barrier dysfunction but had no effect on cGMP-mediated barrier protection. In addition, expression of a Ser-double phosphomimetic mutant VASP failed to reproduce the protective effects of activated PKGI. Finally, expression of a Ser-double phosphorylation-resistant VASP failed to interfere with the ability of cGMP/PKGIto attenuate H2O2-induced disruption of VE-cadherin homotypic binding. Our results suggest that VASP phosphorylation does not explain the protective effect of cGMP/PKGIon H2O2-induced endothelial barrier dysfunction in HPAEC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3