Regulation of airway goblet cell mucin secretion by tyrosine phosphorylation signaling pathways

Author:

Abdullah Lubna H.,Davis C. William

Abstract

Mucus hyperproduction in pulmonary obstructive diseases results from increased goblet cell numbers and possibly increased cellular mucin synthesis, occurring in response to inflammatory mediators acting via receptor tyrosine kinases (RYK) and tyrosine phosphorylation (Y-Pi) signaling pathways. Yet, increased mucin synthesis does not lead necessarily to increased secretion, as mucins are stored in secretory granules and secreted in response to extracellular signals, commonly assumed to be mediated by G protein-coupled receptors (GPCRs). We asked whether activation 1) of Y-Pi signaling pathways, in principal, and 2) of the novel PKC isoform, nPKCδ, by Y-Pi, specifically, might lead to regulated mucin secretion. nPKCδ in SPOC1 cells was tyrosine phosphorylated by exposure to purinergic agonist (ATPγS) or PMA, actions that were blocked by the Src kinase inhibitor, PP1. Mucin secretion, however, was not affected by PP1. Hence, activation of nPKCδ by Y-Pi is unlikely to participate in GPCR-related mucin secretion. Mucin secretion from both SPOC1 and normal human bronchial epithelial (NHBE) cells was stimulated by generalized protein Y-Pi induced by the tyrosine phosphatase inhibitor, pervanadate (PV). PV-induced SPOC1 cell mucin secretion was not affected by inhibition of Src kinases (genistein or PP1), or of PI3 kinase (LY-294002). MAP kinase pathway inhibitors, RAF1 kinase inhibitor-I and U0126 (MEK), inhibited SPOC1 cell PV-induced secretion by ∼50%. Significantly, the phospholipase C (PLC) inhibitor, U-73122, essentially abolished PV- and ATPγS-induced mucin secretion from both SPOC1 and NHBE cells. Hence, PLC signaling may play a key role in regulated mucin secretion, whether the event is initiated by mediators interacting with GPCRs or RYKs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3