Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction

Author:

Ketabchi Farzaneh1,Egemnazarov Bakytbek2,Schermuly Ralph T.2,Ghofrani Hossein A.2,Seeger Werner2,Grimminger Friedrich3,Shid-Moosavi Mostafa1,Dehghani Gholam A.1,Weissmann Norbert2,Sommer Natascha2

Affiliation:

1. School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; and Medical Clinics

2. II and

3. V, University of Giessen Lung Center, Justus-Liebig-University, Giessen, Germany

Abstract

Acute respiratory disorders and permissive hypercapnic strategy may lead to alveolar hypoxia and hypercapnic acidosis. However, the effects of hypercapnia with or without acidosis on hypoxic pulmonary vasoconstriction (HPV) and oxygen diffusion capacity of the lung are controversial. We investigated the effects of hypercapnic acidosis and hypercapnia with normal pH (pH corrected with sodium bicarbonate) on HPV, capillary permeability, gas exchange, and ventilation-perfusion matching in the isolated ventilated-perfused rabbit lung. No alteration in vascular tone was noted during normoxic hypercapnia with or without acidosis compared with normoxic normocapnia. Hypercapnia with normal pH resulted in a transient increase in HPV during the course of consecutive ventilation maneuvers, whereas hypercapnic acidosis increased HPV over time. Hypercapnic acidosis decreased exhaled NO during hypoxia more than hypercapnia with normal pH and normocapnia, whereas intravascular NO release was unchanged. However, inhibition of NO synthesis by nitro-l-arginine (l-NNA) resulted in a loss of the increased HPV caused by hypercapnic acidosis but not that caused by hypercapnia with normal pH. Furthermore, capillary permeability increased during hypoxic hypercapnia with normal pH but not hypoxic hypercapnic acidosis. This effect was NO-dependent because it disappeared during l-NNA administration. Ventilation-perfusion matching and arterial Po2 were improved according to the strength of HPV in hypercapnia compared with normocapnia during Tween nebulization-induced lung injury. In conclusion, the increased HPV during hypercapnic acidosis is beneficial to lung gas exchange by improving ventilation-perfusion matching and preserving the capillary barrier function. These effects seem to be linked to NO-mediated pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3