TTF-1 response element is critical for temporal and spatial regulation and necessary for hormonal regulation of humansurfactant protein-A2promoter activity

Author:

Liu Dongyuan,Yi Ming,Smith Margaret,Mendelson Carole R.

Abstract

Expression of the human surfactant protein-A2 ( hSP-A2) gene is lung specific, occurs in type II and Clara cells, and is developmentally and hormonally regulated in fetal lung. Using transfected human fetal type II cells, we previously observed that ∼300 bp of 5′-flanking DNA mediated cAMP and interleukin-1 (IL-1) stimulation and dexamethasone (Dex) inhibition of hSP-A2 promoter activity. This region contains response elements for estrogen-related receptor α element (ERRE, −241 bp), thyroid transcription factor (TTF)-1/Nkx2.1 (TTF-binding protein, −171 bp), upstream stimulatory factor 1/2 (E-box, −80 bp), and stimulatory protein (Sp) 1 (G/T-box, −62 bp), which are essential for basal and cAMP induction of hSP-A2 expression. To define genomic regions necessary for developmental, hormonal, and tissue-specific regulation of hSP-A2 expression in vivo, we analyzed transgenic mice carrying hGH reporter genes comprised of 313 bp of hSP-A2 gene 5′-flanking DNA ± mutation in the TBE or 175 bp of 5′-flanking DNA, containing TBE, E-box and G/T-box, but lacking ERRE. Transgenes containing 313 or 175 bp of hSP-A2 5′-flanking DNA were expressed in a lung cell-specific manner and developmentally regulated in concert with the endogenous mouse SP-A gene. In cultured lung explants from hSP-A− 313:hGH transgenic fetal mice, cAMP and IL-1 induced and Dex inhibited transgene expression. However, the 175-bp hSP-A2 genomic region was insufficient to mediate hormonal regulation of hSP-A2 promoter activity. The finding that expression of the hSP-A− 313TBEmut:hGH transgene was essentially undetectable in fetal lung and was not hormonally regulated in transgenic fetal lung explants underscores the critical importance of the TBE in lung cell-specific, developmental, and hormonal regulation of hSP-A2 gene expression.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3