Urgent reconsideration of lung edema as a preventable outcome in COVID-19: inhibition of TRPV4 represents a promising and feasible approach

Author:

Kuebler Wolfgang M.1,Jordt Sven-Eric2,Liedtke Wolfgang B.234ORCID

Affiliation:

1. Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany

2. Department of Anesthesiology, Duke University, Durham, North Carolina

3. Department of Neurology, Duke University, Durham, North Carolina

4. Department of Neurobiology, Duke University, Durham, North Carolina

Abstract

Lethality of coronavirus disease (COVID-19) during the 2020 pandemic, currently still in the exponentially accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We argue for inhibition of the transient receptor potential vanilloid 4 (TRPV4) calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in COVID-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in COVID-19 patients with respiratory malfunction and at risk for lung edema. Perplexingly, among the currently pursued therapeutic strategies against COVID-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce COVID-19 lethality but will also preempt a distressing healthcare scenario with insufficient capacity to provide ventilator-assisted respiration.

Funder

HHS | NIH | National Institute of Environmental Health Sciences

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3