Affiliation:
1. Center for Translational Medicine and The Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
2. Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
Abstract
Nur77 is an orphan nuclear receptor implicated in the regulation of a wide range of biological processes, including the maintenance of systemic blood vessel homeostasis. Although Nur77 is known to be expressed in the lung, its role in regulating pulmonary vascular functions remains entirely unknown. In this study, we found that Nur77 is expressed at high levels in the lung, and its expression is markedly upregulated in response to LPS administration. While the pulmonary vasculature of mice that lacked Nur77 appeared to function normally under homeostatic conditions, we observed a dramatic decrease in its barrier functions after exposure to LPS, as demonstrated by an increase in serum proteins in the bronchoalveolar lavage fluid and a reduction in the expression of endothelial junctional proteins, such as vascular endothelial cadherin (VE-cadherin) and β-catenin. Similarly, we found that siRNA knockdown of Nur77 in lung microvascular endothelial cells also reduced VE-cadherin and β-catenin expression and increased the quantity of fluorescein isothiocyanate-labeled dextran transporting across LPS-injured endothelial monolayers. Consistent with Nur77 playing a vascular protective role, we found that adenoviral-mediated overexpression of Nur77 both enhanced expression of VE-cadherin and β-catenin and augmented endothelial barrier protection to LPS in cultured cells. Mechanistically, Nur77 appeared to mediate its protective effects, at least in part, by binding to β-catenin and preventing its degradation. Our findings demonstrate a key role for Nur77 in the maintenance of lung endothelial barrier protection to LPS and suggest that therapeutic strategies aimed at augmenting Nur77 levels might be effective in treating a wide variety of inflammatory vascular diseases of the lung.
Funder
HHS | NIH | National Institute of General Medical Sciences
HHS | NIH | National Heart, Lung, and Blood Institute
American Heart Association
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献