Retinoic acid reverses the airway hyperresponsiveness but not the parenchymal defect that is associated with vitamin A deficiency

Author:

McGowan Stephen E.1,Holmes Amey Jo1,Smith Jennifer1

Affiliation:

1. Research Service, Veterans Affairs Medical Center and the Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242

Abstract

Airway hyperresponsiveness (AHR) is influenced by structural components of the bronchial wall, including the smooth muscle and connective tissue elements and the neuromuscular function. AHR is also influenced by parenchymally derived tethering forces on the bronchial wall, which maintain airway caliber by producing outward radial traction. Our previous work has shown that vitamin A-deficient (VAD) rats exhibit cholinergic hyperresponsiveness and a decrease in the expression and function of the muscarinic-2 receptors (M2R). We hypothesized that if decreases in radial traction from airway or parenchymal structures contributed to the VAD-related increase in AHR, then the radial traction would normalize more slowly than VAD-related alterations in neurotransmitter signaling. Rats remained vitamin A sufficient (VAS) or were rendered VAD and then maintained on the VAD diet in the presence or absence of supplementation with all- trans retinoic acid (RA). VAD was associated with an approximately twofold increase in respiratory resistance and elastance compared with VAS rats. Exposure to RA for 12 days but not 4 days restored resistance and elastance to control (VAS) levels. In VAD rats, AHR was accompanied by decreases in bronchial M2R gene expression and function, which were restored after 12 days of RA supplementation. Subepithelial bronchial elastic fibers were decreased by ∼50% in VAD rats and were significantly restored by RA. The increase in AHR that is associated with VAD is accompanied by decreases in M2R expression and function that can be restored by RA and a reduction in airway elastic fibers that can be partially restored by RA.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3