Author:
Wang Lu,Chitano Pasquale,Murphy Thomas M.
Abstract
Previously, we showed the shortening velocity of guinea pig tracheal strips was the greatest in juvenile (3-wk-old) compared with infant (1-wk-old) and adult animals (3-mo-old). The greatest shortening velocity was associated with the least resistance to shortening calculated from force-velocity curves among the three age groups. It remained to be verified if the stiffness of tracheal tissue, a measure of tissue response to geometrical deformations, is different among the three age groups. We hypothesized that stiffness of intact tracheal strips is lowest in the juvenile group and that this can explain the ontogeny of airway smooth muscle resistance to shortening and shortening velocity. Static stiffness measured through stepwise deformations showed no age-related differences. Evaluation of tissue response to oscillatory deformations showed that the dynamic stiffness of unstimulated tracheal strips was 8.35 ± 0.88, 4.15 ± 1.09, and 8.21 ± 1.57 kPa, and the phase angle was 10.3 ± 2.93, 2.46 ± 0.67, and 7.87 ± 1.77° in infant, juvenile, and adult, respectively. Unstimulated juvenile strips were significantly lower in dynamic stiffness and phase angle compared with unstimulated infant or adult strips. This maturational profile was independent of muscle strip preset length or oscillation mode/amplitude but was abolished at peak of contraction to either carbachol or electric field stimulation. These results suggest that the noncontractile components of tracheal strips are less stiff and contain fewer viscous/frictional elements in juvenile than in other age groups. This may provide a functional basis for reduced resistance to length changes in juvenile airway smooth muscle.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献