Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway

Author:

Francis Richard J. B.,Chatterjee Bishwanath,Loges Niki T.,Zentgraf Hanswalter,Omran Heymut,Lo Cecilia W.

Abstract

Mucociliary clearance in the adult trachea is well characterized, but there are limited data in newborns. Cilia-generated flow was quantified across longitudinal sections of mouse trachea from birth through postnatal day (PND) 28 by tracking fluorescent microsphere speed and directionality. The percentage of ciliated tracheal epithelial cells, as determined by immunohistochemistry, was shown to increase linearly between PND 0 and PND 21 ( R2 = 0.94). While directionality measurements detected patches of flow starting at PND 3, uniform flow across the epithelia was not observed until PND 7 at a ∼35% ciliated cell density. Flow became established at a maximal rate at PND 9 and beyond. A linear correlation was observed between the percentage of ciliated cells versus flow speed ( R2 = 0.495) and directionality ( R2 = 0.975) between PND 0 and PND 9. Cilia beat frequency (CBF) was higher at PND 0 than at all subsequent time points, but cilia beat waveform was not noticeably different. Tracheal epithelia from a mouse model of primary ciliary dyskinesia (PCD) harboring a Mdnah5 mutation showed that ciliated cell density was unaffected, but no cilia-generated flow was detected. Cilia in mutant airways were either immotile or with slow dyssynchronous beat and abnormal ciliary waveform. Overall, our studies showed that the initiation of cilia-generated flow is directly correlated with an increase in epithelial ciliation, with the measurement of directionality being more sensitive than speed for detecting flow. The higher CBF observed in newborn epithelia suggests unique physiology in the newborn trachea, indicating possible clinical relevance to the pathophysiology of respiratory distress seen in newborn PCD patients.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3