VEGF-induced relaxation of pulmonary arteries is mediated by endothelial cytochrome P-450 hydroxylase

Author:

Jacobs Elizabeth R.,Zhu Daling,Gruenloh Stephanie,Lopez Bernardo,Medhora Meetha

Abstract

The cytochrome P-450 metabolite 20-HETE induces calcium-, endothelial-, and nitric oxide (NO)-dependent relaxation of bovine pulmonary arteries (PA). VEGF is an NO-dependent dilator of systemic arteries and plays a key role in maintaining the integrity of the pulmonary vasculature. We tested the effect of VEGF on PA diameter and tone and the contribution of cytochrome P-450 family 4 (CYP4) to vasoactive effects of VEGF. Bovine PA rings (1 mm in diameter) relaxed with VEGF (0.1–10 nM) in an endothelial- and eNOS-dependent manner. This response was blunted by pretreatment with the CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) as well as a mechanistically different CYP4 inhibitor N-hydroxy- N′-(4-butyl-2-methylphenyl)formamidine. PAs also increased in diameter by 6–12% in the presence of VEGF (10 nM), and this increase was attenuated by DDMS. In contrast to that shown in PAs, 20-HETE constricted bovine renal arteries and did not increase intracellular Ca2+ in renal artery endothelial cells as observed in bovine pulmonary artery endothelial cells (BPAECs). VEGF-evoked increases in intracellular Ca2+ concentration ([Ca2+]i) in BPAECs were blunted by treatment with DDMS. Both VEGF (10 nM) and 20-HETE (1–5 μM) stimulated NO release from cultured BPAECs, and once again VEGF-induced increases were attenuated by pretreating the cells with DDMS. We conclude that CYP4/20-HETE contributes to VEGF-stimulated NO release and vasodilation in bovine PAs. Given the unique expression of 20-HETE-forming CYP4 in BPAECs vs. systemic arterial endothelial cells, CYP4 may be an important mediator of endothelial-dependent vasoreactivity in PAs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3