Indoor PM2.5 from coal combustion aggravates ovalbumin-induced asthma-like airway inflammation in BALB/c mice

Author:

Yu Jie1ORCID,Li Kebin1,Xu Jie1

Affiliation:

1. School of Public Health, Zunyi Medical University, Zunyi, People’s Republic of China

Abstract

We hypothesized that indoor PM2.5 exposure from coal combustion exaggerates airway inflammation in the lung tissue of asthmatic mice induced with ovalbumin (OVA). Forty BALB/c mice, randomly divided into four groups ( n = 10 per group), were intratracheally instilled with normal saline alone, PM2.5 (2.5 mg/ml PM2.5 alone), OVA (15 μg/ml OVA alone), and PM2.5+OVA (2.5 mg/ml PM2.5 and 15 μg/ml OVA), respectively, four times at 2-wk intervals. Daily mean concentration of PM2.5 from indoor coal combustion was 156.95 μg/m3. The highest metal composition in PM2.5 was Zn (34.81 ± 1.8 μg/m3). Exposure to PM2.5+OVA significantly elevated IL-4 and decreased IFN-γ production in mice compared with the control ( P < 0.05). Exposure to PM2.5+OVA showed a significant increase in the protein levels of granulocyte-macrophage colony-stimulating factor and IL-8 and a decrease in the protein level of transforming growth factor-β1 in bronchoalveolar lavage fluid of mice compared with the control ( P < 0.05). The expression of IL-4 mRNA was significantly increased, whereas the expression of IFN-γ mRNA was decreased in lung tissue of the PM2.5+OVA group ( P < 0.05). The expression level of Foxp3 mRNA in the PM2.5+OVA group was significantly lower than that in the control group in lung tissue ( P < 0.05). Treatment with PM2.5+OVA promoted a prominent neutrophil sequestration into the lung parenchyma, goblet cell proliferation, and severe inflammatory cell infiltration in the airways. Exposure to PM2.5 from indoor coal combustion might induce airway inflammatory immune responses and exacerbate peribronchiolar inflammation due to infiltration of inflammatory cells into the airway submucosa and airway structural pathological changes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3