Biosynthesis of the polymeric gel-forming mucin MUC5B

Author:

Ridley Caroline12,Kirkham Sara12,Williamson Sally J.12,Davis C. William3,Woodman Philip2,Thornton David J.12ORCID

Affiliation:

1. Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Manchester, United Kingdom;

2. Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom; and

3. Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina

Abstract

MUC5B is a major polymeric mucin in the airway mucus gel and is an essential component of innate defense of the respiratory epithelium. Knowledge of the synthesis and intracellular processing of MUC5B is incomplete. We investigated the molecular details of MUC5B assembly in primary human bronchial epithelial cells (HBECs) grown at an air-liquid interface (ALI). Electrophoretic and centrifugal separations of intracellular forms of MUC5B probed with antibodies specific for non- O-glycosylated and O-glycosylated forms of the mucin identified three major intracellular populations of MUC5B (non- O-glycosylated monomer and dimer, and O-glycosylated polymers). Biophysical analysis of recombinant MUC5B COOH-terminus (CT5B; D4-B-C-CK) expressed in 293-EBNA cells showed that MUC5B dimerizes by disulfide linkage. Pulse-chase studies in the HBEC ALI cultures showed that non- O-glycosylated MUC5B was synthesized within 20 min of metabolic labeling and O-glycosylated, polymeric mucin within 2 h. Radiolabeled O-glycosylated mucin polymers were secreted within 2 h and the majority were released by 48 h. These data indicate that MUC5B follows a similar assembly to the related glycoprotein, von Willebrand factor (vWF); however, unlike vWF the MUC5B polypeptide shows no evidence of major proteolytic processing of D-domains during the production of the mature secreted polymeric mucin in normal and cystic fibrosis (CF) primary bronchial epithelial cells. In contrast, MUC5B D-domains were modified by neutrophil elastase, a protease commonly found in CF sputum, demonstrating that proteolytic degradation of MUC5B is an extracellular event in CF sputum. These results define the pathway for synthesis of MUC5B in primary human goblet cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3