Location of focal silver staining at endothelial gaps in inflamed venules examined by scanning electron microscopy

Author:

Hirata A.1,Baluk P.1,Fujiwara T.1,McDonald D. M.1

Affiliation:

1. Cardiovascular Research Institute, University of California, SanFrancisco 94143, USA.

Abstract

The century-old histological technique of silver nitrate staining has proven to be extremely useful for visualizing endothelial cell borders and localizing endothelial gaps, but the significance of the staining is still not fully understood. To gain some insight into what silver nitrate stains, we developed a method that enabled us to use scanning electron microscopy with backscattered and secondary electron imaging to examine silver staining at endothelial cell borders of venules of the rat tracheal mucosa. We found that in normal venules, silver lines followed the smooth contour of cell borders. However, 1 min after endothelial permeability was increased by substance P, cell borders were irregular and displaced from the silver lines by as much as 4.3 microns, and the lines were accompanied by three types of silver deposits. Most common (46% of total) were annulus-shaped silver deposits that surrounded endothelial gaps. These deposits averaged 1.5 microns in width, were positioned symmetrically across cell borders, and were located at a depth of 0.3 micron beneath the luminal surface. Many endothelial gaps were partitioned into multiple pores (mean, 2.4) by fingerlike processes of endothelial cells. Surprisingly, the gaps occupied only 5.4% of the total area of the silver deposits and constituted 0.15% of the luminal surface of the leaky postcapillary venules. A second type of silver deposit (19% of total) was positioned asymmetrically with respect to the cell border and marked sites where endothelial cell margins still overlapped but appeared to be vertically separated by obliquely oriented gaps. A third type marked gaps at three-cell junctions; these were no more abundant than deposits elsewhere around the cell perimeter, suggesting that three-cell junctions were not unusually leaky sites. We conclude that silver nitrate marks endothelial cell borders and outlines endothelial cell gaps by staining an element of intercellular junctions. The annular shape of many silver deposits around gaps suggests that junctional elements in the apposing cells are separated during gap formation but are still present at the gap perimeter.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3