Reduction of thiazine dyes by bovine pulmonary arterial endothelial cells in culture

Author:

Bongard R. D.1,Merker M. P.1,Shundo R.1,Okamoto Y.1,Roerig D. L.1,Linehan J. H.1,Dawson C. A.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA.

Abstract

The uptake of methylene blue (MB), and toluidine blue O (TBO) by bovine pulmonary arterial endothelial cells grown on microcarrier beads was detected as a decrease in the concentration of dye in the medium after these thiazine dyes were added to the medium surrounding the cells. Because the reduced forms of these dyes are much more lipophilic than the oxidized forms, we considered the possibility that reduction of the dyes at the cell surface might have preceded the uptake by the cells. Therefore, we studied the ability of the cells to reduce a toluidine blue O-polyacrylamide polymer (TBOP), which was too large to enter the cells in either the oxidized or reduced form. The TBO moieties of the polymer were reduced by the cells, indicating that the dyes did not have to enter the cells to be reduced and that reduction can occur at, or near, the cell surface. The rate of TBOP reduction was about the same as the rate of uptake of the monomeric dyes, indicating that the cell surface reduction mechanism had a sufficient capacity to account for the monomer uptake by the cells. We also found that ferricyanide ion, which also did not permeate the cells, was reduced by the cells and that external ferricyanide inhibited the monomeric MB uptake. Thus the results with ferricyanide were also consistent with the concept that the monomeric thiazine dyes are reduced at the cell surface before the more lipophilic reduced forms are taken up by the endothelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3