In vivo lipopolysaccharide pretreatment inhibits cGMP release from the isolated-perfused rat lung

Author:

Kurrek M. M.1,Zapol W. M.1,Holzmann A.1,Filippov G.1,Winkler M.1,Bloch K. D.1

Affiliation:

1. Department of Anesthesia, Beth Israel Hospital, Boston 02115,USA.

Abstract

Administration of bacterial lipopolysaccharide (LPS) to rats stimulates synthesis of nitric oxide (NO), a free radical molecule that activates soluble guanylate cyclase, thereby increasing intracellular guanosine 3',5'-cyclic monophosphate (cGMP) concentration and inducing systemic vasodilatation. To investigate the effect of endotoxemia on the pulmonary NO/cGMP signal transduction system, we measured the release of cGMP by isolated-perfused lungs of rats that received an intraperitoneal injection of LPS (1 mg/kg) or saline 2 days earlier. Over 90 min, 1.4 +/- 0.78 and 0.079 +/- 0.016 nmol cGMP accumulated in pulmonary perfusates of saline- and LPS-treated rats, respectively (P < 0.05). Despite addition to the perfusate of Zaprinast, superoxide dismutase, or A23187, markedly less cGMP was released from the lungs of rats exposed to LPS than from the lungs of control rats. In contrast, after ventilation with 100 parts per million NO gas, cGMP accumulating in the perfusate of the lungs of both groups of rats was markedly increased, and the quantity of cGMP released from the lungs of LPS-treated rats was similar to that released by control rat lungs (2.8 +/- 0.57 vs. 3.3 +/- 0.88 nmol, P = NS). With the use of immunoblot techniques, equal concentrations of constitutive endothelial NO synthase were detected in the lungs of rats treated with saline or LPS. These results demonstrate that the NO/cGMP signal transduction system is abnormal in the lungs of rats exposed to LPS, at least in part, at the level of endothelial NO synthase activation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3