Pulmonary vasoconstriction by serotonin is inhibited byS-nitrosoglutathione

Author:

Nozik-Grayck Eva1,McMahon Timothy J.1,Huang Yuh-Chin T.1,Dieterle Christine S.1,Stamler Jonathan S.1,Piantadosi Claude A.1

Affiliation:

1. Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, North Carolina 27710

Abstract

Nitric oxide (NO) functions as an endothelium-derived relaxing factor by activating guanylate cyclase to increase cGMP levels. However, NO and related species may also regulate vascular tone by cGMP-independent mechanisms. We hypothesized that naturally occurring NO donors could decrease the pulmonary vascular response to serotonin (5-HT) in the intact lung through chemical interactions with 5-HT2receptors. In isolated rabbit lung preparations and isolated pulmonary artery (PA) rings, 50–250 μM S-nitrosoglutathione (GSNO) inhibited the response to 0.01–10 μM 5-HT. The vasoconstrictor response to 5-HT was mediated by 5-HT2receptors in the lung, since it could be blocked completely by the selective inhibitor ketanserin (10 μM). GSNO inhibited the response to 5-HT by 77% in intact lung and 82% in PA rings. In PA rings, inhibition by GSNO could be reversed by treatment with the thiol reductant dithiothreitol (10 mM). 3-Morpholinosydnonimine (100–500 μM), which releases NO and O[Formula: see text] simultaneously, also blocked the response to 5-HT. Its chemical effects, however, were distinct from those of GSNO, because 5-HT-mediated vasoconstriction was not restored in isolated rings by dithiothreitol. In the intact lung, neither NO donor altered the vascular response to endothelin, which activates the same second-messenger vasoconstrictor system as 5-HT. These findings, which did not depend on guanylate cyclase, are consistent with chemical modification by NO of the 5-HT2G protein-coupled receptor system to inhibit vasoconstriction, possibly by S-nitrosylation of the receptor or a related protein. This study demonstrates that GSNO can regulate vascular tone in the intact lung by a reversible mechanism involving inhibition of the response to 5-HT.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3