Enhanced expression of inducible nitric oxide synthase without vasodilator effect in chronically infected lungs

Author:

Cadogan Elaine1,Hopkins Natalie1,Giles Shay1,Bannigan John G.1,Moynihan John1,McLoughlin Paul1

Affiliation:

1. Department of Human Anatomy and Physiology, University College, Dublin 2, Ireland

Abstract

We hypothesized that abnormal ventilation-perfusion matching in chronically infected lungs was in part due to excess nitric oxide (NO) production after upregulation of inducible NO synthase (iNOS) expression. Rats were anesthetized and inoculated intratracheally with Pseudomonas aeruginosa incorporated into agar beads (chronically infected) or with sterile agar beads (placebo inoculated) and killed 10–15 days later. Immunohistochemistry demonstrated increased expression of iNOS and reduced expression of endothelial NOS (eNOS) in chronically infected compared with placebo-inoculated or noninoculated lungs. In isolated lungs from chronically infected rats, NOS inhibition with N ω-nitro-l-arginine methyl ester increased the mean perfusion pressure (14.4 ± 2.7 mmHg) significantly more than in the placebo-inoculated (4.8 ± 1.0 mmHg) or noninoculated (5.3 ± 0.8 mmHg) lungs ( P < 0.01). Although the chronically infected lungs were more sensitive to NOS inhibition, further evidence suggested that the increased iNOS expression was not associated with enhanced iNOS activity. Selective inhibitors of iNOS did not produce an increase in vascular resistance similar to that produced by nonselective inhibitors. Accumulation of nitrate/nitrite in the perfusate of isolated lungs was unchanged by chronic infection. Thus although iNOS expression was increased in chronic pulmonary infection, iNOS activity in the intact lung was not. Nonetheless, endogenous NO production was essential to maintain normal vascular resistance in these lungs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3