Urokinase-type plasminogen activator induces tyrosine phosphorylation of a 78-kDa protein in H-157 cells

Author:

Bhat G. Jayarama1,Gunaje Jagadambika J.1,Idell Steven1

Affiliation:

1. Department of Specialty Care Services, The University of Texas Health Center at Tyler, Tyler, Texas 75708

Abstract

Studies from our laboratory have shown that exposure of human lung epithelial cells to urokinase plasminogen activator (uPA) induces their proliferation. This effect of uPA is likely to occur via activation of signal transduction pathways. To elucidate uPA-induced signal transduction mechanisms, we exposed H-157 cells to uPA and determined the induced tyrosine phosphorylation profile of proteins. We demonstrate that, in these cells, uPA prominently induced tyrosine phosphorylation of a 78-kDa protein. This effect was observed as early as 30 min and was sustained for at least 24 h. Treatment of cells with agents that abrogate uPA receptor (uPAR) function, including neutralizing anti-uPAR antibody, phosphatidylinositol-specific phospholipase C, or a selective antagonist that blocks the association of uPA with uPAR (Å5 compound), all failed to prevent uPA-induced tyrosine phosphorylation. B-428, an active site inhibitor of uPA activity, prevented the uPA effect. Treatment of cells with hepatocyte growth factor, vascular endothelial growth factor, or transforming growth factor-β, all of which are known to be activated by a uPA-dependent pathway, did not stimulate tyrosine phosphorylation of the 78-kDa protein. uPA induced an increase in [3H]thymidine incorporation into DNA, and cell numbers were unaffected in the presence of Å5. These results demonstrate that, in H-157 cells, uPA induces tyrosine phosphorylation of a 78-kDa protein via a proteolysis-dependent but uPAR-independent mechanism. This novel signaling pathway represents a putative mechanism by which uPA could influence epithelial cell proliferation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3