Novel aspects of urokinase function in the injured lung: role of α2-macroglobulin

Author:

Komissarov Andrey A.1,Stankowska Dorota2,Krupa Agnieszka23,Fudala Rafal2,Florova Galina1,Florence Jon2,Fol Marek2,Allen Timothy C.4,Idell Steven1,Matthay Michael A.5,Kurdowska Anna K.2

Affiliation:

1. Texas Lung Injury Institute, University of Texas Health Science Center, Tyler, Texas;

2. Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas;

3. Institute of Medical Biology, Polish Academy of Science, Lodz, Poland

4. Department of Pathology, University of Texas Health Science Center, Tyler, Texas;

5. School of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California; and

Abstract

The level of active urokinase (uPA) is decreased in lung fluids of patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) whereas α2-macroglobulin (α2-M), a plasma proteinase inhibitor, is a major component of these fluids. Since there have been reports describing the ability of α2-M to form complexes with uPA in vitro, we hypothesized that α2-M may interact with uPA in the lung to modulate its biological activity. Pulmonary edema fluids and lung tissues from patients with ALI/ARDS were evaluated for the presence of uPA associated with α2-M. Complexes between α2-M and uPA were detected in alveolar edema fluids as well as in lungs of patients with ALI/ARDS where they were located mainly in close proximity to epithelial cells. While uPA bound to α2-M retains its amidolytic activity towards low-molecular-weight substrates, it is not inhibited by its main physiological inhibitor, plasminogen activator inhibitor 1. We also investigated the functional consequences of formation of complexes between uPA and α2-M in vitro. We found that when α2-M:uPA complexes were added to cultures of human bronchial epithelial cells (BEAS-2B), activation of nuclear factor-κB as well as production of interleukin-6 and -8 was substantially suppressed compared with the addition of uPA alone. Our findings indicate for the first time that the function of uPA in patients with ALI/ARDS may be modulated by α2-M and that the effects may include the regulation of the fibrinolytic and signaling activities of uPA.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3