Affiliation:
1. Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
Abstract
Exposure to dust in agricultural and animal environments, known as organic dust, is associated with the development of respiratory symptoms and respiratory diseases. Inflammation is a key feature of lung pathologies associated with organic dust exposure, and exposure to organic dust induces the expression of several immune and inflammatory mediators. However, information on transcription factors and cellular and molecular mechanisms controlling the production of immune and inflammatory mediators induced by organic dust is limited. In this study, we have identified STAT-3 as an important transcription factor controlling the induction of expression of immune and inflammatory mediators by poultry dust extracts in airway epithelial cells and in mouse lungs and delineated the cellular pathway for STAT-3 activation. Poultry dust extract activated STAT-3 phosphorylation in Beas2B and normal human bronchial epithelial cells and in mouse lungs. Chemical inhibition and siRNA knockdown of STAT-3 suppressed induction of immune and inflammatory mediator expression. Antioxidants suppressed the increase of STAT-3 phosphorylation induced by poultry dust extract indicating that oxidative stress [elevated reactive oxygen species (ROS) levels] is important for the activation. Chemical inhibition and siRNA knockdown experiments demonstrated that STAT-3 activation is dependent on the activation of nonreceptor tyrosine-protein kinase 2 (TYK2) and epidermal growth factor receptor (EGFR) tyrosine kinases. Our studies show that poultry dust extract controls the induction of immune and inflammatory mediator expression via a cellular pathway involving oxidative stress-mediated STAT-3 activation by TYK2 and EGFR tyrosine kinases.
Funder
Center for Disease Control/National Institute of Occupational Safety and Health
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献