Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media

Author:

Leung Clarus1ORCID,Wadsworth Samuel J.1,Yang S. Jasemine1,Dorscheid Delbert R.1

Affiliation:

1. Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada

Abstract

The human bronchial epithelium is an important barrier tissue that is damaged or pathologically altered in various acute and chronic respiratory conditions. To represent the epithelial component of respiratory disease, it is essential to use a physiologically relevant model of this tissue. The human bronchial epithelium is a highly organized tissue consisting of a number of specialized cell types. Primary human bronchial epithelial cells (HBEC) can be differentiated into a mucociliated tissue in air-liquid interface (ALI) cultures using appropriately supplemented media under optimized growth conditions. We compared the histology, ciliary length, and function, diffusion, and barrier properties of HBEC from donors with no respiratory disease grown in two different media, PneumaCult-ALI or Bronchial Epithelial Differentiation Medium (BEDM). In the former group, HBEC have a more physiological pseudostratified morphology and mucociliary differentiation, including increased epithelial thickness, intracellular expression of airway-specific mucin protein MUC5AC, and total expression of cilia basal-body protein compared with cells from the same donor grown in the other medium. Baseline expression levels of inflammatory mediators, thymic stromal lymphopoietin (TSLP), soluble ST2, and eotaxin-3 were lower in PneumaCult-ALI. Additionally, the physiological cilia beat frequency and electrical barrier properties with transepithelial electrical resistance were significantly different between the two groups. Our study has shown that these primary cell cultures from the same donor grown in the two media possess variable structural and functional characteristics. Therefore, it is important to objectively validate primary epithelial cell cultures before experimentation to ensure they are appropriate to answer a specific scientific question.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3