Angiostatin inhibits acute lung injury in a mouse model

Author:

Aulakh Gurpreet K.1,Suri Sarabjeet S.1,Singh Baljit1

Affiliation:

1. Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada

Abstract

Acute lung injury is marked by profound influx of activated neutrophils, which have delayed apoptosis, along with fluid accumulation that impairs lung function and causes high mortality. Inflammatory and antimicrobial molecules, such as reactive oxygen species from activated neutrophils with prolonged lifespan, cause tissue damage and contribute to lung dysfunction. Angiostatin, an endogenous antiangiogenic molecule, is expressed in the lavage fluid of patients with acute respiratory distress syndrome and modifies neutrophil infiltration in a mouse model of peritonitis. Our aim was to investigate the therapeutic role of angiostatin in acute lung injury. We analyzed bronchoalveolar lavage and lung tissues from C57BL/6 mouse model of Escherichia coli LPS-induced acute lung injury to assess the effects of angiostatin treatment. Subcutaneous angiostatin administered at 5 h after LPS treatment reduces histological signs of inflammation, protein accumulation, lung Gr1+ neutrophils, myeloperoxidase activity, and expression of phosphorylated p38 MAPK in lung tissues and peripheral blood neutrophils, while increasing the number of apoptotic cells in the lungs without affecting the levels of macrophage inflammatory protein-1 α, IL-1β, keratinocyte chemoattractant, and monocyte chemoattractant protein-1 in lavage and lung homogenates at 9 and 24 h after LPS treatment. In contrast, angiostatin administered intravenously 5 h after LPS treatment did not reduce histological sign of inflammation, BAL cell recruitment, and protein concentration at 9 h of LPS treatment. We conclude that angiostatin administered subcutaneously after LPS challenge inhibits acute lung inflammation up to 24 h after LPS treatment.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3