Affiliation:
1. UPRES EA220, UFR Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Boulogne, France;
2. Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Paris, France; and
3. Service de chirurgie thoracique, Hôpital Foch, Suresnes, France
Abstract
The airways of patients with cystic fibrosis (CF) exhibit decreased nitric oxide (NO) concentrations, which might affect airway function. The aim of this study was to determine the effects of NO on ion transport in human airway epithelia. Primary cultures of non-CF and CF bronchial and bronchiolar epithelial cells were exposed to the NO donor sodium nitroprusside (SNP), and bioelectric variables were measured in Ussing chambers. Amiloride was added to inhibit the Na+channel ENaC, and forskolin and ATP were added successively to stimulate cAMP- and Ca2+-dependent Cl−secretions, respectively. The involvement of cGMP was assessed by measuring the intracellular cGMP concentration in bronchial cells exposed to SNP and the ion transports in cultures exposed to 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (ODQ), or to 8Z, a cocktail of 8-bromo-cGMP and zaprinast (phosphodiesterase 5 inhibitor). SNP decreased the baseline short-circuit current ( Isc) and the changes in Iscinduced by amiloride, forskolin, and ATP in non-CF bronchial and bronchiolar cultures. The mechanism of this inhibition was studied in bronchial cells. SNP increased the intracellular cGMP concentration ([cGMP]i). The inhibitory effect of SNP was abolished by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO scavenger (PTIO) and ODQ and was partly mimicked by increasing [cGMP]i. In CF cultures, SNP did not significantly modify ion transport; in CF bronchial cells, 8Z had no effect; however, SNP increased the [cGMP]i. In conclusion, exogenous NO may reduce transepithelial Na+absorption and Cl−secretion in human non-CF airway epithelia through a cGMP-dependent pathway. In CF airways, the NO/cGMP pathway appears to exert no effect on transepithelial ion transport.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献