Increased cAMP levels in stimulated neutrophils inhibit their adhesion to human bronchial epithelial cells

Author:

Bloemen P. G.1,van den Tweel M. C.1,Henricks P. A.1,Engels F.1,Kester M. H.1,van de Loo P. G.1,Blomjous F. J.1,Nijkamp F. P.1

Affiliation:

1. Department of Pharmacology and Pathophysiology, Utrecht Institute forPharmaceutical Sciences, Utrecht University, The Netherlands.

Abstract

Bronchial epithelial cells express the intercellular adhesion molecule-1 that mediates binding of activated neutrophils via interaction with Mac-1 and/or leukocyte function-associated antigen-1. In this study, we examined whether increased intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) affected neutrophil adhesion to the human bronchial epithelial cells. It was found that the N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated neutrophil adhesion was concentration dependently inhibited when the cAMP analogs dibutyryl adenosine 3',5'-cyclic monophosphate or 8-bromoadenosine 3',5'-cyclic monophosphate were present. The beta-adrenergic receptor agonists isoprenaline and salmeterol, in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), were also able to inhibit the fMLP-stimulated adhesion of neutrophils to bronchial epithelial cells. These agonists in combination with IBMX significantly increased the intracellular cAMP level in both neutrophils and epithelial cells. Preincubation of neutrophils with the long-acting beta2-adrenergic receptor agonist salmeterol (in the presence of IBMX) inhibited their fMLP-stimulated adhesion to epithelial cells, whereas pretreatment of epithelial cells did not influence the adhesion process. When ethanol-fixed epithelium was used, salmeterol pretreatment also diminished the adhesion of stimulated neutrophils. Moreover, combinations of salmeterol or isoprenaline with IBMX inhibited fMLP-upregulated Mac-1 expression. Therefore, we conclude from these data that elevation of intracellular cAMP in the neutrophil inhibits stimulated neutrophil adhesion to bronchial epithelial cells via Mac-1.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3