Pulmonary endothelial thiazine uptake: separation of cell surface reduction from intracellular reoxidation

Author:

Merker M. P.1,Bongard R. D.1,Linehan J. H.1,Okamoto Y.1,Vyprachticky D.1,Brantmeier B. M.1,Roerig D. L.1,Dawson C. A.1

Affiliation:

1. Department of Anesthesiology, Medical College of Wisconsin, Milwaukee53226, USA.

Abstract

The objective of this study was to further evaluate the hypothesis that the accumulation of thiazine dyes, such as methylene blue, by cultured bovine pulmonary arterial endothelial cells involves reduction on the cell surface, followed by diffusion of the lipophilic reduced form of the dye into the cells and intracellular reoxidation to the relatively membrane-impermeant hydrophilic form. The specific question addressed was whether inhibition of methylene blue uptake by cyanide and azide is via inhibition of extracellular reduction or inhibition of intracellular reoxidation. We used the cell membrane-impermeant ferricyanide ion as a secondary electron acceptor to measure the extracellular reduction of methylene blue independently from its uptake by the cells. In addition, toluidine blue O, incorporated into an acrylamide polymer so that it could not permeate the cells in either its reduced or oxidized forms, was used to examine the effects of cyanide and azide on the extracellular reduction. Microscopic observations of the effect of the inhibitors on the intracellular accumulation of methylene blue were also made. The results indicate that the reduction and intracellular sequestration are separate processes and that, in doses that inhibited intracellular reoxidation, and therefore uptake and sequestration, neither cyanide nor azide had an inhibitory effect on extracellular reduction. The intracellular distribution of the observable oxidized form of the dye was consistent with oxidation of the reduced dye within subcellular organelles. The demonstration that extracellular reduction and intracellular sequestration are separate events is consistent with the hypothesized sequence of events.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3