Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline-induced pulmonary hypertension

Author:

Sehgal Pravin B.,Mukhopadhyay Somshuvra,Xu Fang,Patel Kirit,Shah Mehul

Abstract

Monocrotaline (MCT)-induced pulmonary hypertension (PH) in the rat is a widely used experimental model. We have previously shown that MCT pyrrole (MCTP) produces loss of caveolin-1 (cav-1) and endothelial nitric oxide synthase from plasma membrane raft microdomains in pulmonary arterial endothelial cells (PAEC) with the trapping of these proteins in the Golgi organelle (the Golgi blockade hypothesis). In the present study, we investigated the mechanisms underlying this intracellular trafficking block in experiments in cell culture and in the MCT-treated rat. In cell culture, PAEC showed trapping of cav-1 in Golgi membranes as early as 6 h after exposure to MCTP. Phenotypic megalocytosis and a reduction in anterograde trafficking (assayed in terms of the secretion of horseradish peroxidase derived from exogenously transfected expression constructs) were evident within 12 h after MCTP. Cell fractionation and immunofluorescence techniques revealed the marked accumulation of diverse Golgi tethers, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), and soluble NSF attachment proteins (SNAPs), which mediate membrane fusion during vesicular trafficking (GM130, p115, giantin, golgin 84, clathrin heavy chain, syntaxin-4, -6, Vti1a, Vti1b, GS15, GS27, GS28, SNAP23, and α-SNAP) in the enlarged/circumnuclear Golgi in MCTP-treated PAEC and A549 lung epithelial cells. Moreover, NSF, an ATPase required for the “disassembly” of SNARE complexes subsequent to membrane fusion, was increasingly sequestered in non-Golgi membranes. Immunofluorescence studies of lung tissue from MCT-treated rats confirmed enlargement of perinuclear Golgi elements in lung arterial endothelial and parenchymal cells as early as 4 days after MCT. Thus MCT-induced PH represents a disease state characterized by dysfunction of Golgi tethers, SNAREs, and SNAPs and of intracellular vesicular trafficking.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3