Affiliation:
1. Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Munich, Germany
2. Asklepios Fachkliniken München-Gauting, Munich, Germany
3. Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
4. Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
Abstract
Fibroblasts are thought to be the prime cell type for producing and secreting extracellular matrix (ECM) proteins in the connective tissue. The profibrotic cytokine transforming growth factor-β1 (TGF-β1) activates and transdifferentiates fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts, which exhibit increased ECM secretion, in particular collagens. Little information, however, exists about cell-surface molecules on fibroblasts that mediate this transdifferentiation process. We recently identified, using unbiased cell-surface proteome analysis, Cub domain-containing protein 1 (CDCP1) to be strongly downregulated by TGF-β1. CDCP1 is a transmembrane glycoprotein, the expression and role of which has not been investigated in lung fibroblasts to date. Here, we characterized, in detail, the effect of TGF-β1 on CDCP1 expression and function, using immunofluorescence, FACS, immunoblotting, and siRNA-mediated knockdown of CDCP1. CDCP1 is present on interstitial fibroblasts, but not myofibroblasts, in the normal and idiopathic pulmonary fibrosis lung. In vitro, TGF-β1 decreased CDCP1 expression in a time-dependent manner by impacting mRNA and protein levels. Knockdown of CDCP1 enhanced a TGF-β1-mediated cell adhesion of fibroblasts. Importantly, CDCP1-depleted cells displayed an enhanced expression of profibrotic markers, such as collagen V or α-SMA, which was found to be independent of TGF-β1. Our data show, for the very first time that loss of CDCP1 contributes to fibroblast to myofibroblast differentiation via a potential negative feedback loop between CDCP1 expression and TGF-β1 stimulation.
Funder
Helmholtz Association
German Center for Lung Research
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献