Author:
Boodoo Sada,Spannhake Ernst W.,Powell Jonathan D.,Horton Maureen R.
Abstract
Airway epithelium is emerging as a regulator of local inflammation and immune responses. However, the cellular and molecular mechanisms responsible for the immune modulation by these cells have yet to be fully elucidated. At the cellular level, the hallmarks of airway inflammation are mucus gland hypertrophy with excess mucus production, accumulation of inflammatory mediators, inflammation in the airway walls and lumen, and breakdown and turnover of the extracellular matrix. We demonstrate that fragments of the extracellular matrix component hyaluronan induce inflammatory chemokine production in primary airway epithelial cells grown at an air-liquid interface. Furthermore, hyaluronan fragments use two distinct molecular pathways to induce IL-8 and IFN-γ-inducible protein 10 (IP-10) chemokine expression in airway epithelial cells. Hyaluronan-induced IL-8 requires the MAP kinase pathway, whereas hyaluronan-induced IP-10 utilizes the NF-κB pathway. The induction is specific to low-molecular-weight hyaluronan fragments as other glycosaminoglycans do not induce IL-8 and IP-10 in airway epithelial cells. We hypothesize that not only is the extracellular matrix a target of destruction in airway inflammation but it plays a critical role in perpetuating inflammation through the induction of cytokines, chemokines, and modulatory enzymes in epithelial cells. Furthermore, hyaluronan, by inducing IL-8 and IP-10 by distinct pathways, provides a unique target for differential regulation of key inflammatory chemokines.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献