Epithelial disruption of Gab1 perturbs surfactant homeostasis and predisposes mice to lung injuries

Author:

Wang Kai1,Qin Shenlu2,Liang Zuyu1,Zhang Yun2,Xu Yingchun3,Chen An4,Guo Xiaohong2,Cheng Hongqiang2,Zhang Xue2,Ke Yuehai2

Affiliation:

1. Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China;

2. Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China;

3. Department of Pulmonary Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and

4. Department of Neonatal, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Abstract

GRB2-associated-binding protein 1 (Gab1) belongs to Gab adaptor family, which integrates multiple signals in response to the epithelial growth factors. Recent genetic studies identified genetic variants of human Gab1 gene as potential risk factors of asthmatic inflammation. However, the functions of Gab1 in lungs remain largely unknown. Alveolar type-II cells (AT-IIs) are responsible for surfactant homeostasis and essentially regulate lung inflammation following various injuries (3). In this study, in vitro knockdown of Gab1 was shown to decrease the surfactant proteins (SPs) levels in AT-IIs. We further examined in vivo Gab1 functions through alveolar epithelium-specific Gab1 knockout mice (Gab1Δ/Δ). In vivo Gab1 deficiency leads to a decrease in SP synthesis and the appearance of disorganized lamellar bodies. Histological analysis of the lung sections in Gab1Δ/Δmice shows no apparent pathological alterations or inflammation. However, Gab1Δ/Δmice demonstrate inflammatory responses during the LPS-induced acute lung injury. Similarly, in mice challenged with bleomycin, fibrotic lesions were found to be aggravated in Gab1Δ/Δ. These observations suggest that the abolishment of Gab1 in AT-IIs impairs SP homeostasis, predisposing mice to lung injuries. In addition, we observed that the production of surfactants in AT-IIs overexpressing Gab1 mutants, in which Shp2 phosphatase and PI3K kinase binding sites have been mutated (Gab1ΔShp2, Gab1ΔPI3K), has been considerably attenuated. Together, these findings provide the direct evidence about the roles of docking protein Gab1 in lungs, adding to our understanding of acute and interstitial lung diseases caused by the disruption of alveolar SP homeostasis.

Funder

National Natural Science Foundation of China (NSFC)

Key Research and Development Project of Ministry of Science and Technology

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3