ACKR2 contributes to pulmonary dysfunction by shaping CCL5:CCR5-dependent recruitment of lymphocytes during influenza A infection in mice

Author:

Tavares Luciana P.12,Garcia Cristiana C.3,Gonçalves Ana Paula F.24,Kraemer Lucas R.1,Melo Eliza M.2,Oliveira Fabrício M. S.15,Freitas Camila S.1,Lopes Gabriel A. O.1,Reis Diego C.15,Cassali Geovanni D.5,Machado Alexandre M.4,Mantovani Alberto67,Locati Massimo68,Teixeira Mauro M.2,Russo Remo C.12ORCID

Affiliation:

1. Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

2. Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

3. Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil

4. Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil

5. Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

6. Humanitas Clinical and Research Center, Milan, Italy

7. Humanitas University, Rozzano, Italy

8. Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy

Abstract

Inflammation triggered by influenza A virus (IAV) infection is important for viral clearance, induction of adaptive responses, and return to lung homeostasis. However, an exaggerated immune response, characterized by the overproduction of chemokines, can lead to intense lung injury, contributing to mortality. Chemokine scavenger receptors, such as ACKR2, control the levels of CC chemokines influencing the immune responses. Among the chemokine targets of ACKR2, CCL5 is important to recruit and activate lymphocytes. We investigated the role of ACKR2 during IAV infection in mice. Pulmonary ACKR2 expression was increased acutely after IAV infection preceding the virus-induced lung dysfunction. ACKR2-knockout (ACKR2−/−) mice were protected from IAV, presenting decreased viral burden and lung dysfunction. Mechanistically, the absence of ACKR2 resulted in augmented airway CCL5 levels, secreted by mononuclear and plasma cells in the lung parenchyma. The higher chemokine gradient led to an augmented recruitment of T and B lymphocytes, formation of inducible bronchus-associated lymphoid tissue and production of IgA in the airways of ACKR2−/− mice post-IAV. CCL5 neutralization in ACKR2−/− mice prevented lymphocyte recruitment and increased bronchoalveolar lavage fluid protein levels and pulmonary dysfunction. Finally, CCR5−/− mice presented increased disease severity during IAV infection, displaying increased neutrophils, pulmonary injury and dysfunction, and accentuated lethality. Collectively, our data showed that ACKR2 dampens CCL5 levels and the consequent recruitment of CCR5+ T helper 1 (Th1), T regulatory cells (Tregs), and B lymphocytes during IAV infection, decreasing pathogen control and promoting lung dysfunction in wild type mice. Therefore, ACKR2 is detrimental and CCR5 is protective during IAV infection coordinating innate and adaptive immune responses in mice.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3