α,β-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases

Author:

Moretto Nadia,Facchinetti Fabrizio,Southworth Thomas,Civelli Maurizio,Singh Dave,Patacchini Riccardo

Abstract

Cigarette smoking is the major risk factor for chronic obstructive pulmonary disease (COPD), a syndrome characterized by pulmonary neutrophil infiltration, chronic inflammation, and progressive tissue destruction. We examined here the acute effect of aqueous cigarette smoke extract (CSE) and of two α,β-unsaturated aldehydes (acrolein and crotonaldehyde) contained in CSE in cultured normal human lung fibroblasts and small airway epithelial cells. By examining a panel of 19 cytokines and chemokines, we found that IL-8 release was elevated by CSE as well as by acrolein, whereas other inflammatory mediators were mostly unaffected. CSE-evoked IL-8 release was mimicked by acrolein and crotonaldehyde at concentrations (3–60 μM each) found in CSE and fully prevented by 1 mM α,β-unsaturated aldehydes scavengers N-acetylcysteine (NAC) or sodium 2-mercaptoethanesulfonate. Neither the saturated aldehyde acetaldehyde nor H2O2 evoked IL-8 release. In addition, CSE or crotonaldehyde upregulated the release of IL-8 from alveolar macrophages from both COPD patients and healthy nonsmokers, indicating that this is a response common to cells involved in lung inflammation. CSE-evoked IL-8 release was accompanied by increased phosphorylation of p38 MAPK and ERK1/2. CSE-evoked p38 and ERK1/2 phosphorylation was mimicked by acrolein and inhibited by NAC. IL-8 release elicited by both acrolein and CSE was blocked by pharmacological inhibition of p38 and ERK1/2 phosphorylation. In summary, our data show that α,β-unsaturated aldehydes-evoked phosphorylation of p38 and ERK1/2 underlies IL-8 release elicited by CSE, thus shedding light on the mechanisms through which cigarette smoke can initiate inflammation in the lung.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3