Inhibiting geranylgeranylation blocks growth and promotes apoptosis in pulmonary vascular smooth muscle cells

Author:

Stark William W.1,Blaskovich Michelle A.1,Johnson Bruce A.2,Qian Yimin3,Vasudevan Anil3,Pitt Bruce1,Hamilton Andrew D.3,Sebti Saïd M.1,Davies Paul1

Affiliation:

1. Departments of Pharmacology,

2. Medicine, and

3. Chemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261

Abstract

The activity of small GTP-binding proteins is regulated by a critical step in posttranslational processing, namely, the addition of isoprenoid lipids farnesyl and geranylgeranyl, mediated by the enzymes farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I), respectively. We have developed compounds that inhibit these enzymes specifically and in this study sought to determine their effects on smooth muscle cells (SMC) from the pulmonary microvasculature. We found that the GGTase I inhibitor GGTI-298 suppressed protein geranylgeranylation and blocked serum-dependent growth as measured by thymidine uptake and cell counts. In the absence of serum, however, GGTI-298 induced apoptosis in these cells as measured by both DNA staining and flow cytometry. The FTase inhibitor FTI-277 selectively inhibited protein farnesylation but had a minor effect on growth and no effect on apoptosis. To further investigate the role of geranylgeranylated proteins in apoptosis, we added the cholesterol synthesis inhibitor lovastatin, which inhibits the biosynthesis of farnesyl and geranylgeranyl pyrophosphates. This also induced apoptosis, but when geranylgeraniol was added to replenish cellular pools of geranylgeranyl pyrophosphate, apoptosis was reduced to baseline. In contrast, farnesol achieved only partial rescue of the cells. These results imply that geranylgeranylated proteins are required for growth and protect SMC against apoptosis. GGTase I inhibitors may be useful in preventing hyperplastic remodeling and may have the potential to induce the apoptotic regression of established vascular lesions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3