Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation

Author:

Patel Jawaharlal M.12,Martens Jeffrey R.3,Li Yong D.2,Gelband Craig H.3,Raizada Mohan K.3,Block Edward R.12

Affiliation:

1. Research Service, Department of Veterans Affairs Medical Center, and Departments of

2. Medicine and

3. Physiology, University of Florida College of Medicine, Gainesville, Florida 32608-1611

Abstract

The hexapeptide angiotensin (ANG) IV, a metabolic product of ANG II, has been reported to play a functional role in the regulation of blood flow in extrapulmonary tissues. Here, we demonstrate that ANG IV-specific (AT4) receptors are present in porcine pulmonary arterial endothelial cells (PAECs) and that the binding of ANG IV to AT4 receptors can be blocked by its antagonist divalinal ANG IV but not by the ANG II-, AT1-, and AT2-receptor blockers [Sar1,Ile8]ANG II, losartan, and PD-123177, respectively. ANG IV significantly increased endothelial cell constitutive nitric oxide synthase (ecNOS) activity ( P < 0.05) as well as cellular cGMP content ( P < 0.001). Western blot analysis revealed that ecNOS protein expression was comparable in control and ANG IV-stimulated cells. Divalinal ANG IV but not [Sar1,Ile8]ANG II, losartan, or PD-123177 inhibited the ANG II- and ANG IV-stimulated increases in ecNOS activity and cGMP content in PAECs. Incubation in the presence of N-nitro-l-arginine methyl ester (l-NAME) or methylene blue but not of indomethacin significantly diminished ANG IV-stimulated as well as basal levels of cGMP ( P < 0.001). Similarly, in situ studies with precontracted porcine pulmonary arterial rings showed that ANG IV caused an endothelium-dependent relaxation that was blocked byl-NAME or methylene blue. Collectively, these results demonstrate that ANG IV binds to AT4 receptors, activates ecNOS by posttranscriptional modulation, stimulates cGMP accumulation in PAECs, and causes pulmonary arterial vasodilation, suggesting that ANG IV plays a role in the regulation of blood flow in the pulmonary circulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3