Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1

Author:

Moore Timothy M.1,Brough George H.1,Babal Paul2,Kelly John J.1,Li Ming1,Stevens Troy1

Affiliation:

1. Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama 36688

2. Departments of Pathology and

Abstract

Activation of Ca2+ entry is known to produce endothelial cell shape change, leading to increased permeability, leukocyte migration, and initiation of angiogenesis in conduit-vessel endothelial cells. The mode of Ca2+ entry regulating cell shape is unknown. We hypothesized that activation of store-operated Ca2+ channels (SOCs) is sufficient to promote cell shape change necessary for these processes. SOC activation in rat pulmonary arterial endothelial cells increased free cytosolic Ca2+ that was dependent on a membrane current having a net inward component of 5.45 ± 0.90 pA/pF at −80 mV. Changes in endothelial cell shape accompanied SOC activation and were dependent on Ca2+ entry-induced reconfiguration of peripheral (cortical) filamentous actin (F-actin). Because the identity of pulmonary endothelial SOCs is unknown, but mammalian homologues of the Drosophila melanogaster transient receptor potential ( trp) gene have been proposed to form Ca2+ entry channels in nonexcitable cells, we performed RT-PCR using Trp oligonucleotide primers in both rat and human pulmonary arterial endothelial cells. Both cell types were found to express Trp1, but neither expressed Trp3 nor Trp6. Our study indicates that 1) Ca2+ entry in pulmonary endothelial cells through SOCs produces cell shape change that is dependent on site-specific rearrangement of the microfilamentous cytoskeleton and 2) Trp1 may be a component of pulmonary endothelial SOCs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3