Interaction of ratPneumocystis cariniiand rat alveolar epithelial cells in vitro

Author:

Beck James M.12,Preston Angela M.1,Wagner John G.1,Wilcoxen Steven E.1,Hossler Paul3,Meshnick Steven R.3,Paine Robert12

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center,

2. Veterans Affairs Medical Center, and

3. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109

Abstract

During Pneumocystis carinii pneumonia, P. carinii trophic forms adhere tightly to type I alveolar epithelial cells (AECs). However, the manner in which the interaction between P. cariniiorganisms and AECs results in clinical pneumonia has not been explored. To investigate this interaction in vitro, we established a culture system using rat P. carinii and primary cultures of rat AECs. We hypothesized that binding of P. carinii to AECs would alter the metabolic, structural, and barrier functions of confluent AECs. Using fluorescently labeled P. carinii, we demonstrated that P. carinii bound to AECs in a dose-dependent manner. During P. carinii-AEC interaction, both the AECs and the P. carinii organisms remained metabolically active. Immunofluorescent staining demonstrated that AEC expression of the junctional proteins E-cadherin and occludin and the structural protein cytokeratin 8 were unaffected by P. carinii binding. To evaluate the effect of P. carinii on AEC barrier function, transepithelial resistance across AEC monolayers was measured during interaction with organisms. Culture with P. carinii did not result in loss of AEC barrier function but in fact increased AEC transepithelial resistance in a dose- and time-dependent manner. We conclude that the direct interaction of P. carinii with AECs does not disrupt AEC metabolic, structural, or barrier function. Therefore, we speculate that additional inflammatory cells and/or their signals are required to induce the epithelial derangements characteristic of P. carinii pneumonia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3