Hydrolysis of surfactant-associated phosphatidylcholine by mammalian secretory phospholipases A2

Author:

Hite R. Duncan1,Seeds Michael C.1,Jacinto Randy B.1,Balasubramanian R.1,Waite Moseley2,Bass David1

Affiliation:

1. Section on Pulmonary and Critical Care, Department of Internal Medicine, and

2. Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157

Abstract

Hydrolysis of surfactant-associated phospholipids by secretory phospholipases A2 is an important potential mechanism for surfactant dysfunction in inflammatory lung diseases. In these conditions, airway secretory phospholipase A2(sPLA2) activity is increased, but the type of sPLA2 and its impact on surfactant function are not well understood. We examined in vitro the effect of multiple secretory phospholipases A2 on surfactant, including their ability to 1) release free fatty acids, 2) release lysophospholipids, and 3) increase the minimum surface tension (γmin) on a pulsating bubble surfactometer. Natural porcine surfactant and Survanta were exposed to mammalian group I (recombinant porcine pancreatic) and group II (recombinant human) secretory phospholipases A2. Our results demonstrate that mammalian group I sPLA2 hydrolyzes phosphatidylcholine (PC), producing free fatty acids and lysophosphatidylcholine, and increases γmin. In contrast, mammalian group II sPLA2 demonstrates limited hydrolysis of PC and does not increase γmin. Group I and group II secretory phospholipases A2 from snake venom hydrolyze PC and inhibit surfactant function. In summary, mammalian secretory phospholipases A2 from groups I and II differ significantly from each other and from snake venom in their ability to hydrolyze surfactant-associated PC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3