Effect of hypoxic exposure on Na+/H+antiport activity, isoform expression, and localization in endothelial cells

Author:

Cutaia M. V.1,Parks N.2,Centracchio J.3,Rounds S.2,Yip K. P.4,Sun A. M.3

Affiliation:

1. Pulmonary Disease Division, Department of Medicine, Veterans Affairs Medical Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 02908-9019;

2. Pulmonary and Critical Care Section, Department of Medicine, Veterans Affairs Medical Center and Brown University School of Medicine, Providence 02908;

3. Renal Division, Department of Medicine, Rhode Island Hospital, Providence 02903; and

4. Division of Biology and Medicine, Department of Physiology, Brown University, Providence, Rhode Island 02906

Abstract

Little is known about the effects of prolonged hypoxic exposure on membrane ion transport activity. The Na+/H+antiport is an ion transport site that regulates intracellular pH in mammalian cells. We determined the effect of prolonged hypoxic exposure on human pulmonary arterial endothelial cell antiport activity, gene expression, and localization. Monolayers were incubated under hypoxic or normoxic conditions for 72 h. Antiport activity was determined as the rate of recovery from intracellular acidosis. Antiport isoform identification and gene expression were determined with RT-PCR and Northern and Western blots. Antiport localization and F-actin cytoskeleton organization were defined with immunofluorescent staining. Prolonged hypoxic exposure decreased antiport activity, with no change in cell viability compared with normoxic control cells. One antiport isoform [Na+/H+exchanger isoform (NHE) 1] that was localized to the basolateral cell surface was present in human pulmonary arterial endothelial cells. Hypoxic exposure had no effect on NHE1 mRNA transcript expression, but NHE1 protein expression was upregulated. Immunofluorescent staining demonstrated a significant alteration of the F-actin cytoskeleton after hypoxic exposure but no change in NHE1 localization. These results demonstrate that the decrease in NHE1 activity after prolonged hypoxic exposure is not related to altered gene expression. The change in NHE1 activity may have important consequences for vascular function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3