Differences in the translation efficiency and mRNA stability mediated by 5′-UTR splice variants of human SP-A1 and SP-A2 genes

Author:

Wang Guirong,Guo Xiaoxuan,Floros Joanna

Abstract

Surfactant protein A (SP-A) plays an important role in host defense, modulation of inflammatory processes, and surfactant-related functions of the lung. The human SP-A (hSP-A) locus consists of two functional genes, SP-A1 and SP-A2. Several hSP-A 5′-untranslated region (UTR) splice variants for each gene have been characterized and shown to be translated in vitro and in vivo. In this report, we investigated the role of hSP-A 5′-UTR splice variants on SP-A production and molecular mechanisms involved. We used in vitro transient expression of hSP-A 5′-UTR constructs containing luciferase as the reporter gene and quantitative real-time PCR to study hSP-A 5′-UTR-mediated gene expression. We found that 1) the four (A′D′, ABD, AB′D′, and A′CD′) 5′-UTR splice variants under study enhanced gene expression, by increasing luciferase activity from 2.5- to 19.5-fold and luciferase mRNA from 4.3- to 8.8-fold compared with the control vector that lacked hSP-A 5′-UTR; 2) all four 5′-UTR splice variants studied regulated mRNA stability. The ABD variant exhibited the lowest rate of mRNA decay compared with the other three constructs (A′D′, AB′D′, and A′CD′). These three constructs also exhibited significantly lower rate of mRNA decay compared with the control vector; 3) based on the indexes of translational efficiency (luciferase activity/mRNA), ABD and AB′D′ exhibited higher translational efficiency compared with the control vector, whereas the translational efficiency of each A′D′ and A′CD′ was lower than that of the control vector. These findings indicate that the hSP-A 5′-UTR splice variants play an important role in both SP-A translation and mRNA stability.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3